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Abstract

The stress intensity factors and energy release rates are determined for cracked orthotropic sheets with riveted

sti�eners. A closed form solution is used and the approach adopted is based on compatibility of displacements
among the sheet, fasteners and sti�eners. E�ects of the nonlinear shear deformation of the fasteners, the plastic
deformation of the sti�eners, and sti�ener cutouts in frames are included in the analysis. A one-bay crack and a

two-bay crack with center sti�ener either intact or broken are evaluated. The results obtained from the analytical
method are compared with ®nite element results. Good agreement of these results demonstrates the validity and
accuracy of the analytical method. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sti�ener-reinforced sheet structures are widely used in aircraft designs based on fail-safe and damage
tolerant requirements. A considerable amount of research on crack tip stress intensity analysis has been
conducted by many researchers (Romualdi et al., 1957; Poe, 1973; Swift, 1984; Nishimura, 1991). In
their papers, the e�ects of a cracked sheet attached with multiple intact sti�eners and broken sti�eners,
the bending ¯exibilities of sheet and sti�eners, the nonlinear shear deformation of fasteners, and cracked
sti�eners have been studied. These results are obtained under a condition that the sheet has isotropic
material properties.

Laminated aluminum materials and laminated composites are often orthotropic if regarded as a
homogeneous media. Several studies have been conducted for fracture mechanics of laminated
orthotropic skin sheets (Yeh, 1988, 1993, 1995). A closed form solution was developed to determine the
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stress intensity factor and energy release rates for cracked orthotropic sheets with riveted sti�eners (Yeh,
1993). The analysis was conducted within the limitations of elasticity theory.

For low-load, high-cycle fatigue, the analytical method presented by Yeh (1993) can be used to
predict the fatigue crack growth of a cracked sti�ened panel, and consequently determine the required
inspection intervals according to damage tolerant design method. However, for determination of
residual strength, the force in the ®rst fastener adjacent to the skin crack is very large when the skin
crack crosses the intact sti�ener. Therefore, the e�ects of the nonlinear shear deformation of the
fasteners and the plastic deformation of the sti�eners need to be included in the residual strength
analysis. In this study, the computer program developed by Yeh (1993) for the elastic analysis is
extensively modi®ed to include these two nonlinear e�ects. The program is also modi®ed to allow for
variable cross-section sti�eners simulating the sti�ener cutouts in frames.

In the next section, a closed form solution of cracked orthotropic sheets with riveted sti�eners is
presented for the displacement compatibility analysis (Swift, 1984). An approach to handle nonlinear
e�ects of fasteners and sti�eners is presented. In Section 3, fracture mechanics parameters, stress
intensity factor and energy release rate, are determined for the cracked orthotropic sheets as functions of
the applied stress and the corresponding fastener forces. Finally, numerical examples for an orthotropic
laminate with one-bay and two-bay cracks are studied and discussed. The accuracy of the present
method is demonstrated by comparing the analytical solution with ®nite element results.

2. Formulation of problem

The analysis model shown in Fig. 1 is a cracked sheet reinforced with riveted sti�eners subjected to a
remote uniaxial stress. The crack in the sheet is perpendicular to the loading direction. The number and
location of sti�eners and fasteners are arbitrary and not restricted. The sheet is assumed to be
orthotropic, with principal directions of orthotropy being oriented parallel to and normal to the crack.

Fig. 1. Schematic of a cracked sheet with riveted sti�eners.
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The thickness of the sheet is so small compared with the in-plane dimensions that the problem may be
treated as a plane stress problem.

There are two popular ways to determine the fracture mechanics parameters at the crack tip. One is
the direct ®nite element analysis, which can be used to obtain the crack tip stress intensity factor and
energy release rate for those complex structures with orthotropic material properties. This analysis
requires a considerable amount of computer running time. Another is the displacement compatibility
method commonly used for parametric studies in design calculations (Swift, 1984). The latter approach
is adopted in this study.

By using the solution of a single crack in an in®nite sheet and the principle of superposition, the
condition of equilibrium of force and the condition of compatibility of displacements among the sheet,
fasteners and sti�eners are formulated. For simplicity, the method of analysis for a single attached
sti�ener problem is described below.

2.1. Skin displacements

Displacements in the cracked sheet are determined by superposition of the four cases shown in Fig.
2(a±d). Displacements resulting from these four cases are: (1) v1, the displacement in the uncracked
sheet caused by an applied uniform stress, s0, (2) v2, the displacement in the cracked sheet resulting
from the stress s0 applied to the crack surface, (3) v3, the displacement in the uncracked sheet due to a
fastener force, F, (4) v4, the displacement in the cracked sheet resulting from the stress (caused by the
fastener force F ) applied to the crack face.

The displacement v1 in an uncracked sheet subjected to the remote uniaxial stress, s0, shown in Fig.
2(a), is given by:

v1 � s0=Eyy �1�
where Ey is Young's modulus of the orthotropic sheet in y-direction shown in Fig. 1. In order to

Fig. 2. Displacements that are superimposed to determine total sheet displacement.
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determine the other displacements, v2, v3 and v4, the complex stress function approach of Lekhnitskii
(1968) is used. For plane stress, the y-component of sheet displacement, v, can be given using two
complex stress functions, f and c, as:

v�x, y� � 2Re
�
q1f�z1� � q2c�z2�

� �2�

where Re represents the real part of the complex function, and

zm � x� smy, �3�

qm � 1ÿ nys2m
smEy

�m � 1, 2� �4�

with sm being the roots of the characteristic equation

s4 �
�
Ex

Gxy
ÿ 2nx

�
s2 � Ex

Ey
� 0 �5�

in which Ex, Ey, Gxy, nx and ny are the elastic constants of the orthotropic sheet and nx=Ex � ny=Ey.
Note that the imaginary part of sm is larger than zero, since the above characteristic equation cannot
have real roots for any ideal elastic body (Lekhnitskii, 1968).

The displacement v2 in the cracked sheet subjected to an uniform applied stress s0 on the crack
surface may be obtained from the following two complex stress functions (Sih and Liebowitz, 1968)

f2�z1� �
s2

s2 ÿ s1

s0
2

� ���������������
z21 ÿ a2

q
ÿ z1

�
�6a�

c2�z2� �
s1

s1 ÿ s2

s0
2

� ���������������
z22 ÿ a2

q
ÿ z2

�
�6b�

where a is the half crack length. Substitution of eqn (6) into eqn (2) leads to the following expression for
v2:

v2 � 2Re�q1f2�z1� � q2c2�z2�� �7�

For the case shown in Fig. 2c, the sheet contains no crack and is subjected to a single concentrated
force F located at point (x0, y0), the Kolosov±Muskhelishvili complex stress functions (Lekhnitskii,
1968) are given by:

f3�z1� � C12
F

t
log �z1 ÿ z10� �8a�

c3�z2� � C22
F

t
log �z2 ÿ z20� �8b�

in which

zm0 � x0 � smy0 �m � 1, 2� �9�
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C12 � 1

2pi
s2 �s2 � �s1s2 � �s1 �s2 � vx

�s1 ÿ s2��s1 ÿ �s1��1ÿ �s2=s1� �10a�

C22 � 1

2pi
s1 �s1 � �s2s1 � �s2 �s1 � vx

�s2 ÿ s1��s2 ÿ �s2��1ÿ �s1=s2� �10b�

where t is the thickness of the sheet, i � �������ÿ1p
and �sm are the complex conjugates of sm for m=1, 2.

Note that eqn (8) contains a singularity at the point (x0, y0) and cannot be used in its present form to
calculate the displacement at this point. This problem is eliminated by distributing the concentrated
force, F, uniformly over the fastener diameter, d. Using eqn (8) to obtain the stress functions of a
distributed load and integrating the e�ect over the fastener diameter will yield the following equation
free from the singularity at the load point:

f3�z1� � C12
F

td

��z1 ÿ z10 � d=2� log�z1 ÿ z10 � d=2� ÿ �z1 ÿ z10 ÿ d=2� log�z1 ÿ z10 ÿ d=2�� �11a�

c3�z2� � C22
F

td

��z2 ÿ z20 � d=2� log�z2 ÿ z20 � d=2� ÿ �z2 ÿ z20 ÿ d=2� log�z2 ÿ z20 ÿ d=2�� �11b�

The displacement v3 of the uncracked sheet resulting from the fastener force F is obtained by
substituting eqn (8) (or eqn (11) for the load point) into eqn (2):

v3 � 2Re
�
q1f3�z1� � q2c3�z2 �

� �12�

and the corresponding stress distribution anywhere in the sheet can be determined as follows:

sx�x, y� � 2Re
h
s21f

0
3�z1� � s22c

0
3�z2 �

i
�13a�

sy�x, y� � 2Re
�
f 03�z1� � c 03�z2�

� �13b�

txy�x, y� � ÿ2Re
�
s1f

0
3�z1 � � s2c

0
3�z2�

� �13c�

where ( ) ' signi®es di�erentiation of a function with respect to its argument. On the real axis z=x, the
stresses sy and txy take on the forms

sy�x, 0� � 2Re

��
C12

xÿ z10
� C22

xÿ z20

�
F

t

�
�14a�

txy�x, 0� � ÿ2Re
��

s1C12

xÿ z10
� s2C22

xÿ z20

�
F

t

�
�14b�

Applying these stresses to the surface of the crack shown in Fig. 2d, the following complex stress
functions for the displacement v4 can be obtained by integrating eqn (4.27) in Sih and Liebowitz (1968):

f4�z1� � ÿ
F

2�s2 ÿ s1 �t
h
s2

�
C12g�z1, z10 � � �C 12g�z1, �z10 � � C22g�z1, z20� � �C22g�z1, �z20 �

�
ÿ
�
s1C12g�z1, z10 � � �s1 �C12g�z1, �z10 � � s2C22g�z1, z20 � � �s2 �C22g�z1, �z20 �

�i
�15a�
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c4�z2� � ÿ
F

2�s1 ÿ s2�t
h
s1

�
C12g�z2, z10 � � �C12g�z2, �z10 � � C22g�z2, z20 � � �C22g�z2, �z20 �

�
ÿ
�
s1C12g�z2, z10 � � �s1 �C12g�z2, �z10 � � s2C22g�z2, z20 � � �s2 �C22g�z2, �z20 �

�i
�15b�

where

g�z, z0� � log

�
z � z0 ÿ a2 �

���������������
z2 ÿ a2
p ���������������

z20 ÿ a2
q �

ÿ log
ÿ
z�

���������������
z2 ÿ a2
p �

�16�

Substitution of eqn (15) into eqn (2) results in the following equation for the displacement v4:

v4 � 2Re
�
q1f4�z1� � q2c4�z2 �

� �17�

Finally, the total displacement of the cracked orthotropic sheet due to the remote tensile stress and
fastener reaction forces can be expressed as:

vt � v1 � v2 �
Xj
i�1

�
v3�Fi � � v4�Fi �

� �18�

where j is the number of fasteners and Fi is the reaction force at the i-th fastener.

2.2. Fastener displacements

The i-th fastener displacement due to the fastener reaction force Fi is given as follows:

vfi � Fi � f�v� �19�

where v is the shear displacement of the fastener; f denotes the fastener ¯exibility and can be a function
of fastener shear displacement. The empirical expressions of f at the initial linear elastic stage for
aluminum and steel rivets have been determined from tests (Swift, 1984).

2.3. Sti�ener displacements

The displacements for intact and broken sti�eners are analyzed using a similar approach reported by
Poe (1973) and Swift (1984). The intact sti�ener displacements vgi due to the applied stress s0 of the
sheet are given by:

vgi � Fe

Es

Xi
j�1

yj ÿ yjÿ1
Aj

�20�

where Es is the Young's modulus of the sti�ener; A is the cross-sectional area of sti�ener between the
fasteners; y is the fastener coordinates from the crack center line; and the force, Fe, applied at the end of
sti�ener is obtained from the following equation by assuming that the displacement of the sheet is equal
to the sti�ener displacement at the N-th active fastener:

s0
Ey

yN � Fe

Es

XN
i�1

yi ÿ yiÿ1
Ai

�21�
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N is the number of active fasteners per sti�ener. The intact sti�ener displacements vdi due to direct
fastener forces F are given by:

vdi � 1

Es

Xi
j�1

yi ÿ yjÿ1
Aj

XN
k�j

Fk �22�

Similarly, the broken sti�ener displacements due to the fastener forces are de®ned from the N-th active
fastener and are given by:

vdi � 1

Es

XN
j�i�1

yj � yjÿ1
Aj

Xjÿ1
k�1

Fk �23�

Note that the above equations are valid until the sti�ener stress reaches the yield strength of the
sti�ener. If the applied stresses are not too high, small scale sti�ener yielding does not drastically e�ect
the results obtained from the elastic analysis (Yeh, 1993). However, if this is not the case then a
nonlinear analysis is usually required.

2.4. Displacement compatibility

In the previous sections, the displacements of the cracked orthotropic sheet, fasteners, and sti�eners
are presented. Thus, a system of simultaneous equations with unknown fastener forces is set up by
making a series of displacements in the cracked sheet compatible with those of the sti�eners and
fasteners at the junction line of fastener arrays. The size of the compatibility matrix is equal to the total
number of active fasteners. Then, the compatibility matrix is inverted and unknown fastener forces are
solved. A detailed description of the displacement compatibility method can be found in Swift (1984).

The computer program developed by Yeh (1993) earlier for the elastic analysis, is extensively modi®ed
to handle two nonlinear behaviors of the riveted sti�ened panel. They are the nonlinear load-
displacement behavior of the fastener and the elastic-plastic behavior of the sti�ener. A direct iteration
approach using the trial and error process, is chosen to solve the nonlinear problem (Zienkiewicz, 1977).
A linear elastic solution is generated initially based on the initial slopes of the fastener load-de¯ection
and sti�ener stress-strain curves. These slopes are then modi®ed according to the resulting fastener force
and the corresponding sti�ener stress between adjacent rivets. A new solution is obtained based on these
new slopes. The crack-tip stress intensity factor obtained from the ®rst solution is compared to that
obtained from the second solution. If the di�erence is greater than a set number, which can be adjusted,
then the procedure is automatically repeated. The iterative process continues automatically until the
stress intensity factor between iterations drops below the speci®ed value, and at this time a ®nal solution
at the given crack size and input gross stress is output. The program is set to handle di�erent applied
stress levels and di�erent crack sizes in a single run.

3. Fracture mechanics parameters at the crack tip

In examining the stability of cracks, it is customary to determine the stress intensity factor and energy
release rate at the crack tip. These two fracture mechanics parameters may be obtained from the stress
and displacement ®elds near the crack tip as follows (Irwin, 1957):

K1 � lim
r40

�������
2pr
p

sy�r, 0� �24�
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G1 � lim
c40

1

c

�c
0

sy�r, 0� v�cÿ r, p� dr �25�

where c is the length of virtual crack extension. The stress, sy, and the displacement, v, are expressed in
terms of polar coordinates r and y (see Fig. 1). Therefore, in order to determine the fracture mechanics
parameters, we need to transform the Cartesian coordinates used in the previous section to polar
coordinates. This can easily be done by letting

x � a� r cos �y� y � r sin �y� �26�

Since only the asymptotic stress and displacement distributions around the crack tip are needed in eqns
(24) and (25), we can further assume that r is small in comparison with the half crack length a. Based
on the above arguments, sy and v can be obtained in terms of the remote tensile stress and the active
fastener forces:

sy�r, 0� � 1�����
2r
p H �27�

v�r, p� �
�����
2r
p

H Re

�
q1s2 ÿ q2s1
s2 ÿ s1

i

�
�28�

in which

H � s0
���
a
p ÿ

XM
j�1

Fj

t
���
a
p 2Re

�
C12J�z1j � � C22J�z2j �

� �29�

J�z� � 1ÿ
�����������
z� a
p�����������
zÿ a
p �30�

where M is the total number of active fasteners. Substitution of eqns (27) and (28) into eqns (24) and
(25) yields the fracture mechanics parameters KI and GI of the sti�ened sheet due to the remote tensile
stress and the fastener forces (Yeh, 1988, 1989).

KI �
���
p
p

H �31�

GI � p
2
H 2Re

�
q1s2 ÿ q2s1
s2 ÿ s1

i

�
�32�

A limiting case of unsti�ened panel is considered by assuming all fastener forces equal to zero in eqns
(31) and (32). The following expressions for the stress intensity factor and energy release rate of a
cracked sheet subjected to an uniform applied stress are obtained:

K�I � s0
������
pa
p �33�

G�I � s20pa
1

2
Re

�
q1s2 ÿ q2s1
s2 ÿ s1

i

�
�34�
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which are identical to the solution given by Sih and Liebowitz (1968). It can also be shown that
�KI=K

�
I �2 � G1=G

�
1

4. Numerical results and discussion

To demonstrate the applicability and accuracy of the present approach, three types of problems
shown in Fig. 3 are studied using both the present analytical method and the ®nite element method.
They are: Case (a) one-bay crack, Case (b) two-bay crack with center sti�ener intact and Case (c) two-
bay crack with center sti�ener broken. The study is conducted using one typical fuselage con®guration
with sheet thickness 1 mm, sti�eners spaced 250 mm apart with cross-sectional area 150 mm2, and
fastener spacing 25 mm with fastener diameter 5 mm. For the purpose of this exercise, the sheet is
chosen to be an orthotropic laminate and the sti�eners are chosen to be 7075-T6 aluminum alloy.
Material properties are listed in Table 1

Although the e�ects of the bending ¯exibilities of the sheet and sti�eners are already incorporated
into the computer program, these e�ects are not included in the present calculations. Moreover, the
friction forces between the sheet and sti�eners are neglected and the loss of sti�ener area due to the
fastener holes is ignored in the analysis.

Since the e�ect of the fasteners far away from the crack is negligibly small, computing time can be
minimized by reducing the number of fasteners used to a reasonable level while still maintaining the
desired degree of accuracy. The sensitivity of the number of fasteners considered has been studied
earlier. Poe (1973) and Swift (1984) have found 5 and 15 fasteners to be appropriate for isotropic sheets
with intact and broken sti�eners, respectively. Similar conclusions were also obtained for sti�ened
orthotropic sheet (Yeh, 1993). Therefore, 15 fasteners are used in this study in order to obtain a
converged solution consistently.

The e�ects of the nonlinear shear deformation of the fastener are studied ®rst. The corresponding

Fig. 3. Cases studied to verify model.
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force due to the nonlinear shear deformation is applied at all the fastener locations. A piecewise linear
load-displacement model obtained from Swift (1984) is used here and the data are listed in Table 2.
From the displacement compatibility analysis, the resulting normalized stress intensity factors �KI=K

�
I � as

a function of half crack length, a, are obtained and plotted in Figs. 4±6 for Cases (a)±(c) shown in Fig.
3, respectively. Note that K�I is de®ned in eqn (33). For comparison, the resulting normalized stress
intensity factors for perfect rigid fasteners are also plotted in the ®gures (denoted as Rigid). It can be
seen that in some cases the value of stress intensity factors is increased due to the e�ects of the
nonlinear shear deformation of fastener.

Finite element analyses using ABAQUS are also conducted for these cases. Due to symmetry, only a
quarter of the sheet is divided into four-node plane stress elements and the sti�eners are discretized by
two-node truss elements. The truss elements are connected to the sheet by nonlinear spring elements.
The ®nite element mesh for Case (a) consists of 2646 nodes, 2542 plane stress, 16 truss and 15 spring
elements. Similar meshes utilizing 32 truss and 30 spring elements are used for Cases (b) and (c). The
®nite element results are also shown in Figs. 4±6 for comparison. It can be seen that good agreement is
obtained for the cases studied.

The e�ects of the plastic deformation of the sti�ener are studied next. A elastic-perfectly plastic stress-
strain model is used and the yield strength of 7075-T6 aluminum alloy is set to be 505 MPa. Two types
of sti�eners are considered in this study: (A) sti�eners having a constant cross-sectional area of 150 mm2

and (B) sti�eners where the area inside the ®rst rivet is reduced from 150 mm2 to 100 mm2. The latter
type is used to simulate a frame detail where the frame is cut to accommodate continuous stringers
passing through the frames. From the displacement compatibility analysis, the resulting normalized
stress intensity factors as a function of the half crack length are obtained and plotted in Figs. 7±9 for
Cases (a)±(c) shown in Fig. 3, respectively. For comparison, the resulting normalized stress intensity

Table 1

Material properties used in the study

Orthotropic laminated skin

Ey � 68,000 MPa

Ex � 48,000 MPa

Gxy � 17,000 MPa

ny � 0:33
nx � 0:23

Aluminum 7075-T6

E � 71,000 MPa

n � 0:33
sy � 505 Mpa

Table 2

Piecewise linear model for fastener shear de-

formation (Swift, 1984)

Force (N ) Displacement (mm)

0 0

3252 0.0737

4811 0.2591

5568 0.7264

J.R. Yeh, M. Kulak / International Journal of Solids and Structures 37 (2000) 2473±24872482



Fig. 4. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with nonlinear shear deformation of the

fastener (one-bay crack case).

Fig. 5. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with nonlinear shear deformation of the

fastener (two-bay crack case with central sti�ener intact).

Fig. 6. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with nonlinear shear deformation of the

fastener (two-bay crack case with central sti�ener broken).
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factors for linear elastic sti�eners are also plotted in the ®gures (denoted as Elastic). It can be seen that
in some cases the value of stress intensity factors is signi®cantly increased due to the e�ects of the
plastic deformation and the area reduction of the sti�ener. The ®nite element results are also shown in
Figs. 7±9 for comparison. Again, good agreement is obtained for the cases studied.

Finally, the combined e�ects of the nonlinear shear deformation of the fastener and the elastic-plastic
deformation of the sti�ener are studied. The resulting normalized stress intensity factors for both
sti�ener types (A and B) are obtained and plotted in Figs. 10±12 for Cases (a)±(c) shown in Fig. 3,
respectively. It is not a surprise to see that in some cases the stress intensity factors of sti�ener type B
are much higher than sti�ener type A. It should be mentioned that for sti�ener type A, the stress
intensity factors are dominated by the fastener nonlinear shear deformation, and for sti�ener type B, the
stress intensity factors are controlled by the sti�ener plastic deformation. The ®nite element results are
also shown in Figs. 10±12 for comparison. It can be seen that good agreement is obtained for the cases
studied.

As mentioned in Section 2.4 for nonlinear analyses, the iterative process continues until the di�erence
of stress intensity factor between iterations drops below a speci®ed value, e. In other words, the analysis
stops when j1ÿ Knÿ1=Knj < e. The value of e was set to be 0.0001 in this study in order to obtain a

Fig. 7. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with plastic deformation of the sti�ener (one-

bay crack case).

Fig. 8. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with plastic deformation of the sti�ener (two-

bay crack case with central sti�ener intact).
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converged solution. Note that for all the cases studied in the paper, a converged solution was always
obtained and the maximum number of iteration required was 41.

The agreement between the analytical and ®nite element results for all the cases presented provides
the validity of the present closed form solution of cracked orthotropic sheets for the displacement
compatibility analysis with the e�ects of the fastener nonlinear shear deformation and the sti�ener
plastic deformation. Note that the analytical method requires much shorter computer run time and
fewer input data than the ®nite element analysis, so parametric studies for damage tolerance assessment
can be made more easily and at a lower cost.

5. Conclusions

A closed form solution for cracked orthotropic sheets with riveted sti�eners is presented. The e�ects
of the fastener nonlinear shear deformation, the sti�ener plastic deformation, and the sti�ener cutouts

Fig. 9. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with plastic deformation of the sti�ener (two-

bay crack case with central sti�ener broken).

Fig. 10. Normalized stress intensity factor for an orthotropic cracked sti�ened panel with fastener nonlinear shear and sti�ener

plastic deformations (one-bay crack case).
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are included in the analysis. The sti�ener cutouts are used to simulate a frame detail where the frame is
cut to accommodate continuous stringers passing through the frames. Stress intensity factors and energy
release rates are determined based on compatibility of displacements among the sheet, fasteners and
sti�eners. Three example problems, one-bay crack and two-bay crack with center sti�ener either intact
or broken, are solved and the results are veri®ed by ®nite element analysis. The present method is ideal
for parametric studies of basic structural con®gurations because of its relatively low computer costs.
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